

(Ether-phosphan)eisen(II)-Komplexe mit den Koordinationszahlen Vier, Fünf und Sechs

Ekkehard Lindner*, Michael Geprägs, Riad Fawzi und Manfred Steimann

Institut für Anorganische Chemie der Universität Tübingen, Auf der Morgenstelle 18, W-7400 Tübingen

Eingegangen 1. Oktober 1992

Key Words: Iron(II) complexes / Ether phosphanes / Coordination numbers

(Ether-phosphane)iron(II) Complexes with the Coordination Numbers Four, Five, and Six

Photolysis of *cis,cis,trans*-Br₂(OC)₂Fe($P \sim O$)₂ (**1** a, b) [O,P = Ph₂PCH₂CH₂OCH₃ (**a**), Ph₂PCH₂C₄H₇O (**b**)] results in the formation of the iron(II) complexes Br₂Fe($P \sim O$)₂ (**2** a), [BrFe-($P^{\circ}O$)(μ -Br)]₂ (**4**b), and [*trans*-Br₂Fe($P^{\circ}O$)(μ -CO)]₂ (**5** a) with the coordination numbers four, five, and six, respectively. **2a** crystallizes in the triclinic space group $P\overline{1}$ with Z = 2 and has two

Bifunktionelle Phosphane, die gleichzeitig über Phosphor und Sauerstoff als Donorzentren verfügen, erlangten im Hinblick auf ihre katalytische Aktivität in Komplexen mit Metallen der achten Nebengruppe erhebliches Interesse^[1]. Zu dieser Klasse von hemilabilen Liganden zählen auch Ether-Phosphane mit einem cyclischen oder acyclischen Etherrest^[2,3]. Ihre Komplexe mit Ruthenium, Rhodium und Palladium zeigen ausgeprägtes fluktuierendes Verhalten^[1], sobald zwei O-Funktionen um eine freie Koordinationsstelle konkurrieren. Besonders intensiv wurden Austauschprozesse an oktaedrischen Bis-^[4,5] und Tris(ether-phosphan)ruthenium(II)-Systemen^[6,7] untersucht. Eine quantitative Aussage über die Stärke der Ru-O-Bindung in diesen Verbindungen erhält man durch temperaturabhängige ${}^{31}P{}^{1}H{}^{-}$ NMR-spektroskopische Studien und Linienformanalyse^[8]. Danach lassen sich die verschiedenen Ether-Phosphane in Abhängigkeit der Ru-O-Bindungsstärke in eine Reihe einordnen^[8]. Entsprechende (Ether-phosphan)osmium(II)-Spezies weisen wegen der höheren Oxophilie des Osmiums kein dynamisches Verhalten auf. In den temperaturabhängigen ³¹P{¹H}-NMR-Spektren beobachtet man jedoch interessante Umlagerungsphänomene^[9]. Vorliegende Arbeit befaßt sich erstmals mit der Synthese und Strukturaufklärung von (Ether-Phosphan)-Komplexen, die das weniger oxophile Eisen(II)-Ion als Zentralatom enthalten. Insbesondere wird der Frage nachgegangen, ob auch hier Bifunktionalität der O,P-Liganden nachgewiesen werden kann.

Resultate und Diskussion

Beim Bestrahlen einer Diethylether-Lösung der Dicarbonyleisen(II)-Verbindung **1a** unter Durchleiten von Argon spaltet sich unter Bildung von **2a** quantitativ CO ab. Alternativ erhält man **2a** auch aus wasserfreiem FeBr_2 und dem O,P-Liganden **3a** in Ethanol bei 40 °C (vgl. Schema 1). Bei dem Bis(ether-phosphan)-Komplex **2a** handelt es sich monodentated O_iP functions ($P \sim O: \eta^1$ -*P*-coordinated; $P \cap O: \eta^2$ -O_iP-coordinated). The dimeric complex **4b** with two O^oP-chelated ligands crystallizes in the orthorhombic space group *Pbca* with Z = 4. **2a** and **4b**, which react under CO pressure to give the starting complexes **1a**, **b**, are also accessible from the ether-phosphanes **3a**, **b** and anhydrous FeBr₂.

um eine farblose, gegenüber Luftsauerstoff und Feuchtigkeit empfindliche Verbindung, die sich in polaren organischen Solvenzien wie Ethanol (langsame Zersetzung) oder THF gut löst. Magnetische Messungen zeigen einen Paramagne-

tismus von $\mu_{eff} = 5.2$ B.M., wie er für tetraedrische Eisen(II)-Komplexe charakteristisch ist^[10]. Im IR-Spektrum (KBr) von **2a** verändert sich die Lage von $v_{as}(C_2O)$ gegenüber **1a** nicht, dies entspricht η^1 -*P*-Koordination.

Eine Röntgenstrukturanalyse bestätigt den tetraedrischen Aufbau von **2a** (vgl. Abb. 1). Mögliche Eisen-Sauerstoff-Wechselwirkungen sind aufgrund des zu großen Abstands auszuschließen. Wegen der geringen Oxophilie von Eisen wird einem oktaedrischen Bis(chelat)-Komplex wie er bei Ruthenium auftritt, ausgewichen. Die Fe-P-Bindungslängen korrelieren mit Literaturwerten für tetraedrische Phosphaneisen(II)-Komplexe^[11]. Im Vergleich zur Summe der Kovalenzradien sind sie um 20 pm länger.

Abb. 1. ORTEP-Darstellung von **2a**; ausgewählte Bindungsabstände [pm] und -winkel [°]: Fe(1)-P(1) 243.3(2), Fe(1)-Br(1) 236.1(1), C(25)-C(26) 149.8(8), P(1)-C(25) 183.4(6); Br(1)-Fe(1)-Br(2) 119.5(1), P(1)-Fe(1)-P(2) 103.3(1), Br(1)-Fe(1)-P(1) 108.8(1), Br(2)-Fe(1)-P(2) 103.0(1)

Ein völlig anderes Resultat liefert die Photolyse einer Diethylether-Lösung von 1b mit dem stärker basischen Tetrahydrofuryl-Rest als Etherfunktion. Überraschenderweise entsteht nicht der vermeintlich kinetisch stabilere, rutheniumanaloge^[4] Bis(chelat)eisen(II)-Komplex $Br_2Fe(P^{\circ}O)_2$, sondern unter Abspaltung von CO und einem Äquivalent 3b der dimere, bromverbrückte, hellgrüne Chelatkomplex 4b, der auch aus FeBr₂ und 3b zugänglich ist. 4b löst sich in polaren organischen Solvenzien und ist hierin oxidationsempfindlich. Das Felddesorptions-Massenspektrum zeigt zwei Peaks bei m/z = 972 und 486, die der Molekülmasse bzw. der Hälfte davon entsprechen. Im IR-Spektrum (KBr) beobachtet man für $v_{as}(C_2O)$ eine nach niedrigeren Wellenzahlen verschobene Absorption, die auf n²-O^P-Koordinierung hindeutet^[4,9]. Magnetische Messungen zeigen einen Paramagnetismus von $\mu_{eff} = 5.8$ B.M.

Zur Lösung des Strukturproblems wurde von **4b** eine Röntgenstrukturanalyse durchgeführt. Abb. 2 zeigt den dimeren, zentrosymmetrischen Aufbau, in dem die Eisenatome über unsymmetrische Brombrücken verknüpft sind. Beide Zentralatome sind trigonal-bipyramidal koordiniert, wobei der Winkel zwischen den axialen Liganden Brom und Sauerstoff nur wenig von 180° abweicht. Der Fe-P-Abstand befindet sich in einem Bereich, wie er für fünffach koordinierte Eisen(II)-Verbindungen charakteristisch ist^[12]. Die Fe-O-Distanz ist gegenüber der Summe der Kovalenzradien um 27 pm größer; eine solche Verlängerung findet man auch in oktaedrischen η^2 -O^P-chelatisierten Ruthenium-(II)-Komplexen^[5,13]. Die erhebliche Entfernung zwischen beiden Eisenatomen und der Paramagnetismus von **4b** schließen einen Metall-Metall-Kontakt aus.

Abb. 2. ORTEP-Darstellung von **4b**; ausgewählte Bindungsabstände [pm] und -winkel [°]: Fe(1)-Br(1) 248.4(1), Fe(1)-Br(1a) 270.1(1), Fe(1)-Br(2) 239.8(1), Fe(1)-P(1) 248.3(2), Fe(1)-O(1) 219.3(5), C(13)-C(14) 129.6(14), C(14)-O(1) 140.3(13); Br(1a)-Fe(1)-O(1) 171.1(1), Br(1)-Fe(1)-Br(2) 121.0(1), Br(2)-Fe(1)-P(1) 119.5(1), Br(1)-Fe(1)-P(1) 118.6(1), P(1)-Fe(1)-O(1) 76.8(1)

Setzt man CHCl₃-Lösungen von **2a** und **4b** bei 20°C einem CO-Druck von 60 bar aus, so beobachtet man eine Rückreaktion zu den Edukten **1a**, b. Im Falle von **4b** läßt sich dieses Verhalten nur durch eine in Lösung auftretende Ligandendisproportionierung gemäß (1) erklären. Ähnliches dissoziatives Verhalten von koordinativ ungesättigten Phosphaneisen(II)-Komplexen in polaren Lösungsmitteln ist bereits beschrieben worden^[10a].

$$\mathbf{4b} \rightleftharpoons \mathrm{FeBr}_2 + \mathrm{FeBr}_2(\mathrm{O},\mathrm{P})_2 \tag{1}$$

Bei der Druckcarbonylierung einer CHCl₃-Lösung von **2a** bildet sich als Nebenprodukt eine weitere Verbindung (**5a**), die mit einem Produkt identisch ist, das durch Rühren einer Lösung von **1a** bei Raumtemperatur entsteht. Auch beim vorsichtigen Entfernen des Lösungsmittels im Vakuum zersetzt sie sich so rasch, daß ihre Isolierung bislang nicht gelungen ist. Eine spektroskopische Charakterisierung von **5a** in Lösung war allerdings möglich. So treten zwischen 1850 und 1900 cm⁻¹ im Spektrum (*n*-Hexan) zwei Banden auf, die aufgrund ihrer Lage eindeutig auf brückenständiges Kohlenmonoxid hinweisen. Darüber hinaus ist vas(C₂O) gegenüber **1a** zu niedrigen Wellenzahlen verschoben, in Übereinstimmung mit einer zweizähnigen Verknüpfungsweise des O,P-Liganden. Die CO-Brücke scheint leicht spaltbar zu sein, da im Felddesorptions-Massenspektrum nur ein Peak bei m/z = 488 auftritt, der der halben Molekülmasse entspricht. Im ³¹P{¹H}-NMR-Spektrum von 5a beobachtet man zwei Singuletts, die auf Konfigurationsisomerie der O,P-Liganden hinweisen. Ihre auffallende Tieffeldverschiebung ist in Übereinstimmung mit dem Vorliegen fünfgliedriger Chelatringe^[14].

Vergleicht man die oktaedrischen Carbonyl(etherphosphan)eisen(II)-Komplexe 1a, b mit denjenigen von Ruthenium^[4,5] und Osmium^[9], so macht sich vor allem die schwächere Eisen-Kohlenstoff-Bindung^[15] bemerkbar. 1a, b spalten schon bei kurzer Belichtung und $-25^{\circ}C$ quantitativ CO ab. Die geringere Oxophilie von Eisen gibt sich insbesondere bei den Komplexen 2a und 4b zu erkennen. Im Falle von 2a reicht die O-Basizität^[16] nicht für einen kinetisch stabilen Bis(chelat)-Komplex aus. Tetraedrische Konfiguration ist bei Komplexen mit späten Übergangsmetallen der 3d-Reihe begünstigt^[17]. Analoge Verbindungen bei den Homologen der Eisentriade bevorzugen dagegen eindeutig oktaedrische Umgebung^[5,9], die durch chelatisierende Etherkoordination an die oxophileren Metalle erreicht wird. Erstaunlicherweise führt das stärker O-basische Phosphan 3b in 4b ebenfalls zu keinem oktaedrischen Bis(chelat)-Komplex. Vielmehr verdrängt die O-Funktion eines Etherrests einen O,P-Liganden unter Ausbildung des dimeren, fünffach koordinierten Komplexes 4b. Die verzerrt trigonal-bipyramidale Konfiguration der Eisenatome entspricht dabei den Strukturvorhersagen nach EHT-Rechnungen für d⁶-ML₅-Fragmente, die einen schwachen σ -Donor- und guten π -Donor-Liganden (in 4b Br⁻) in äquatorialer Position aufweisen^[18]. Der Verzicht auf oktaedrische Konfiguration ist vermutlich auf den größeren sterischen Anspruch von 3b zurückzuführen, welche Phosphan-Dissoziation erleichtert. Einen weiteren Unterschied zu den schwereren Homologen erkennt man bei der CO-Druckreaktion von 4b, wobei der dimere Komplex nicht einfach CO anlagert, sondern unter Ligandendisproportionierung und Chelat-Öffnung zu 2b und FeBr₂ reagiert. In entsprechenden Osmiumkomplexen ist der Os-O-Kontakt dagegen so stark, daß die Chelat-Bindung erhalten bleibt^[9]. Der geringere sterische Anspruch des Liganden 3a und das Auftreten von µ-CO-Brückenfunktionen dürften die Ursachen für die bevorzugte Bildung des dimeren Komplexes 5a sein.

Wir danken dem Verband der Chemischen Industrie e. V., Fonds der Chemischen Industrie für die finanzielle Unterstützung dieser Arbeit. Der BASF Aktiengesellschaft danken wir für die Überlassung von wertvollen Ausgangsmaterialien.

Experimenteller Teil

Alle Arbeiten erfolgten unter Ausschluß von Luftsauerstoff und Feuchtigkeit unter gereinigtem Argon. Die verwendeten Lösungsmittel wurden sorgfältig getrocknet und Argon-gesättigt. Diethylether und THF wurden jeweils frisch über LiAlH4 destilliert. Die Darstellung der (Ether-Phosphan)-Liganden 3a, b^[2] und der Komplexe cis, cis, trans-Br₂(OC)₂Fe($P \sim O$)₂ (1a, b)^[19] erfolgte nach bekannten Vorschriften.

MS (FD): Finnigan MAT 711 A, modifiziert von Fa. AMD (8 kV, 65°C). – IR: Bruker IFS 48. – ${}^{31}P{}^{1}H$ -NMR: Bruker WP 80 und AC 80 (Meßfrequenzen 32.39 bzw. 32.44 MHz, ext. Standard 1proz. Phosphorsäure/[D₆]Aceton). - Magnetische Messungen: Quantum Design SQUID, 5.5 Tesla mit HP 150 Rechner. - Kristallstrukturen von 2a und 4b: Einkristalldiffraktometer der Fa. Siemens (Graphitmonochromator, Mo- K_{α} -Strahlung). – Mikroelementaranalysen: Carlo Erba 1106 und Atomabsorptionsspektrometer Perkin Elmer, Modell 4000.

Allgemeine Vorschrift zur Darstellung der (Ether-phosphan)eisen-(II)-Komplexe 2a und 4b

a) Aus 1 a, b: Lösungen von 1 a, b in 50 ml Diethylether und 10 ml CHCl3 werden in einer Kühlmantelbelichtungsapparatur bei -25° C 10 min mit einer Quarzlampe ($\lambda = 254$ nm) unter Durchleiten von Argon belichtet. Die Farbe der Lösungen hellt sich dabei von gelb nach fast farblos auf. Das Lösungsmittel wird bei Raumtemp. i. Vak. entfernt und der farblose Rückstand 2a bzw. 4b 30 min mit 20 ml n-Hexan gerührt. Man dekantiert die n-Hexanlösung und kristallisiert 2a und 4b aus CHCl₃/n-Hexan um. 2a fällt in Form farbloser Nadeln an, 4b bildet grünliche Plättchen.

b) Aus FeBr₂ und 3a, b: FeBr₂ und 3a, b werden in 50 ml Ethanol 2 h bei 40°C gerührt. Anschließend wird nicht umgesetztes FeBr2 abfiltriert (P4). Das Lösungsmittel wird i. Vak. bei Raumtemp. entfernt und der bräunliche Rückstand zweimal mit je 15 ml n-Hexan gerührt, wobei farblose Produkte (2a bzw. 4b) entstehen, die aus CHCl₃/n-Hexan umkristallisiert werden.

1) Dibromobis [(2-methoxyethyl)diphenylphosphan-P]eisen(II) (2a). - Methode a): Einwaage 228 mg (0.30 mmol) 1a. Ausb. 165 mg (78%), Schmp. 113°C (Zers.). - MS (FD), m/z: 705 [M⁺, bez. auf ⁵⁶Fe, ⁸¹Br]. – IR (KBr, cm⁻¹): $v_{as}(C_2O) = 1105$ s.

Methode b): Einwaage 216 mg (1.00 mmol) FeBr₂ und 500 mg (2.05 mmol) 3a. Ausb. 507 mg (72%), Schmp. 113°C (Zers.). - MS (FD), m/z: 703 [M⁺, bez. auf ⁵⁶Fe, ⁷⁹Br]. – IR (KBr, cm⁻¹): $v_{as}(C_2O)$ = 1105 s. – Magnetische Messung: μ = 5.18–5.22 B.M. (T = 20-310 K); χ_{mol} (korr.) = $223500 \cdot 10^{-6} - 12980 \cdot 10^{-6}$, χ_{dia} = $-368.2 \cdot 10^{-6}$ emu/mol.

> $C_{30}H_{34}Br_2FeO_2P_2$ (704.2) Ber. C 51.17 H 4.87 Br 22.69 Fe 7.93 Gef. C 51.08 H 5.19 Br 24.07 Fe 8.79 nach a) nach b) Gef. C 51.19 H 5.16 Br 23.43 Fe 8.35

2) Di-µ-bromo-bis{bromo[diphenyl(tetrahydro-2-furanylmethyl)phosphan-O,P [eisen(II)] (4b). – Methode a): Einwaage 243 mg (0.30 mmol) 1b. Ausb. 95 mg (65%), Zers.-P. 106°C. - MS (FD), m/z: 486 [M⁺/2, bez. auf ⁵⁶Fe, ⁸¹Br]. - IR (KBr, cm⁻¹): v_{as}(C₂O) = 1017 s.

Methode b): Einwaage 216 mg (1.00 mmol) FeBr₂ und 285 mg (1.05 mmol) 3b. Ausb. 384 mg (79%), Zers.-P. 107 °C. - MS (FD), m/z: 486 [M⁺/2, bez. auf ⁵⁶Fe, ⁸¹Br]. - IR (KBr, cm⁻¹): v_{as}(C₂O) = 1017 s. – Magnetische Messung: $\mu = 5.16 - 5.21$ B.M. (T = 20–310 K); χ_{mol} (korr.) = 344600 \cdot 10⁻⁶-22020 \cdot 10⁻⁶, χ_{dia} = $-233.0 \cdot 10^{-6}$ emu/mol.

	$C_{34}H_{38}Br_2Fe_2O_2P_2$ (971.9)				
	Ber. C 42.02	H 3.94	Br 32.88	Fe 11.49	
nach a)	Gef. C 42.04	H 3.87	Br 34.05	Fe 12.01	
nach b)	Gef. C 42.36	H 4.19	Br 32.76	Fe 11.37	

Allgemeine Vorschrift zur Darstellung der cis, cis, trans-Komplexe 1a, b: Lösungen von 2a bzw. 4b in jeweils 60 ml CHCl3 werden in einem Edelstahl-Handautoklaven mit 100-ml-Volumen 2 h bei Raumtemp. unter 60 bar CO-Druck gerührt. Die Farbe der anfänglich fast farblosen Lösungen vertieft sich dabei nach leuchtend gelb (2a) bzw. tiefrot (4b). Man entfernt das Lösungsmittel i. Vak., wäscht mit 20 ml n-Hexan nach und kristallisiert 1a, b bei 0°C aus Ethanol um. Im Falle von 2a bleibt in der Ethanolmutterlauge noch der Komplex 5a zurück.

3) cis-Dibromo-cis-dicarbonyl-trans-bis[(2-methoxyethyl)diphenylphosphan-P]eisen(II) (1a): Einwaage 211 mg (0.30 mmol) 2a. Ausb. 39 mg (17%), Zers.-P. 132°C. – MS (FD), m/z: 760 [M⁺, bez. auf ⁵⁶Fe, ⁷⁹Br]. – IR (KBr, cm⁻¹): v_s (CO) = 2042 vs, v_{as} (CO) = 1982 vs, v_{as} (C₂O) = 1100 s. – ³¹P{¹H}-NMR (CH₂Cl₂, -30°C, 32.39 MHz): δ = 26.7 (s).

 $\begin{array}{l} C_{32}H_{34}Br_{2}FeO_{4}P_{2} \ (760.2) \\ Ber. \ C \ 50.56 \ H \ 4.51 \ Br \ 21.02 \ Fe \ 7.35 \\ Gef. \ C \ 49.77 \ H \ 4.23 \ Br \ 21.23 \ Fe \ 7.82 \end{array}$

4) cis-Dibromo-cis-dicarbonyl-trans-bis[diphenyl(tetrahydro-2-furanylmethyl)phosphan-P]eisen(II) (1b): Einwaage 292 mg (0.30 mmol) 4b. Ausb. 117 mg (48%), Zers.-P. 134°C. – MS (FD), m/z: 814.3 [M⁺, bez. auf ⁵⁶Fe, ⁸¹Br]. – IR (KBr, cm⁻¹): v_s(CO) = 2040 vs, v_s(CO) = 1984 vs, v_s(C₂O) = 1050 s. – ³¹P{¹H}-NMR (CH₂Cl₂, -30°C, 32.44 MHz): δ = 28.5 (s), 29.6 (s).

 $\begin{array}{l} C_{36}H_{38}Br_2FeO_4P_2 \ (812.3)\\ Ber. \ C \ 53.23 \ H \ 4.72 \ Br \ 19.67 \ Fe \ 6.88\\ Gef. \ C \ 53.34 \ H \ 5.06 \ Br \ 19.51 \ Fe \ 6.50 \end{array}$

5) Schonende Photolyse von 1a: Eine Lösung von 228 mg (0.30 mmol) 1a in 30 ml CHCl₃ und 10 ml *n*-Hexan wird unter Rühren bei 20 °C 24 h Sonnenlicht ausgesetzt. Die anfänglich gelbe Lösung hellt sich dabei unter leichter Gasentwicklung auf. Beim Versuch das Lösungsmittel i. Vak. zu entfernen und 5a zu trocknen, erfolgt Zersetzung. Auch eine säulenchromatographische Abtrennung von 5a aus der Reaktionslösung gelingt nicht. Spektroskopische Identifizierung von 5a: MS (FD), *m/z*: 490 [M⁺/2, bez. auf ⁵⁶Fe, ⁸¹Br]. – IR (*n*-Hexan, cm⁻¹): v(μ -CO) = 1871 s, 1881 s. – ³¹P{¹H}-NMR (CHCl₃, – 30 °C, 32.39 MHz): $\delta = 67.2$ (s), 67.3 (s).

Tab. 1. Lageparameter (· 10⁴) und isotrope äquivalente Temperaturparameter U_{eq} [pm² · 10⁻¹] der Atome von **2a**. $U_{eq} = 1/3$ $(U_{11} + U_{22} + U_{33})$

Atom	x	у	Z	U _{eq}
Fe(1)	2443(1)	3602(1)	2284(1)	23(1)
Br(1)	1221(1)	3831(1)	1007(1)	36(1)
Br(2)	3822(1)	5677(1)	3140(1)	36(1)
P(1)	3909(2)	2109(2)	2175 (1)	24(1)
P(2)	725 (2)	2256(2)	3049(1)	24(1)
C(1)	5414(6)	4139(4)	1288 (3)	45 (3)
C(2)	6373	4662	790	62 (4)
C (3)	7111	3824	542	65 (4)
C(4)	6890	2462	792	63 (4)
C(5)	5931	1938	1290	50(3)
C(6)	5192	2777	1538	31 (2)
C(7)	2803(5)	-895(4)	2079(2)	38(2)
C(8)	1931	-2211	1693	48(3)
C (9)	1105	-2288	935	39(3)
C(10)	1151	-1049	562	38 (3)
C(11)	2024	267	948	31 (2)
C(12)	2849	344	1706	24 (2)
C(13)	-1041(4)	295 (5)	1809(2)	41 (3)
C(14)	-2253	-848	1454	55 (3)
C(15)	-3318	-1484	1876	50(3)
C(16)	-3171	-976	2652	43(3)
C(17)	-1959	167	3007	38 (3)
C(18)	-894	803	2585	27 (2)
C(19)	1442(5)	31 (4)	3789(3)	50(3)
C(20)	2238	-540	4363	66(4)
C(21)	3214	330	5004	56(4)
C (22)	3392	1773	5071	60 (4)
C (23)	2595	2344	4497	46(3)
C(24)	1620	1474	3856	31 (2)
C(25)	4991 (7)	1790(6)	3093 (3)	27 (2)
C (26)	5911 (7)	3121(7)	3598 (3)	31 (2)
0(1)	-706(6)	5474 (5)	3405(3)	43 (2)
C(27)	7570 (9)	3917(8)	4805(4)	45 (3)
C(28)	73 (7)	3483(6)	3543(3)	28(2)
C(29)	-525(8)	4373(7)	2958(4)	34 (2)
0(2)	6856(5)	2772 (5)	4220 (3)	37 (2)
C(30)	-1269(10)	6387 (9)	2921 (5)	56(3)

Röntgenstrukturanalyse von 2a^[20]: Einkristall aus CHCl₃/n-Hexan: $0.2 \times 0.4 \times 0.4$ mm; Siemens Vierkreisdiffraktometer P4, Mo- K_{α} (Graphit-Monochromator, $\lambda = 0.71073$ Å). $C_{30}H_{34}Br_2FeO_2P_2$, Molmasse 704.2, Raumgruppe $P\overline{1}$, Gitterkonstanten a = 998.4(2), b = 999.5(2), c = 1732.9(3) pm, $\alpha = 90.67(3), \beta = 101.29(3), \gamma =$ $108.86(3)^{\circ}, d_{\text{ber}} = 1.462 \text{ g/cm}^3, V = 1599.5(5) \cdot 10^6 \text{ pm}^3, Z = 2,$ μ (Mo- K_{σ}) = 3.094 mm⁻¹, Meßtemperatur -100°C, Meßbereich $2\Theta = 4-50^\circ$, Scan = ω ; Scangeschwindigkeit variabel $(10-30^\circ)$ min in ω); h, k, l: -11 \rightarrow 11, -11 \rightarrow 11, -20 \rightarrow 20, Gesamtzahl der Reflexe 11250, Zahl der symmetrieunabhängigen Reflexe mit I $\geq 2\sigma(I)$ 3875, verfeinerte Parameter 286, Absorptionskorrektur empirisch (Y-Scan), max./min. Transmission 0.186/0.111. Die Lösung der Struktur gelang mittels einer Patterson-Synthese^[21]. Alle Atome (außer H) wurden anisotrop verfeinert. Die H-Atome wurden geometrisch positioniert (Riding-model) und die Phenylringe als starre Gruppen behandelt. Max. und min. Restelektronendichte 1.18 bzw. $-0.70 \text{ e}^{\text{Å}^{-3}}$. Der *R*-Wert ergab sich zu 0.051 (R_w = 0.050). S = 0.84. Die Lageparameter von 2a sind in Tab. 1 zusammengestellt.

Tab. 2. Lageparameter (\cdot 10⁴) und isotrope äquivalente Temperaturparameter U_{eq} [pm² \cdot 10⁻¹] der Atome von **4b**. $U_{eq} = 1/3$ $(U_{11} + U_{22} + U_{33})$

Atom	x	У	Z	U_{eq}
Fe(1)	6337 (1)	9861(1)	5541(1)	29(1)
Br (1)	5758(1)	9261(1)	4483(1)	36(1)
Br(2)	7631(1)	11060(1)	5607(1)	56(1)
P(1)	5888 (2)	9049(1)	6529(1)	40(1)
C(1)	4719(4)	10114(3)	7352(2)	43 (3)
C(2)	4488	10518	7933	46(3)
C (3)	5268	10403	8455	57 (3)
C(4)	6278	9883	8396	55 (3)
C(5)	6509	9479	7814	45 (3)
C(6)	5730	9594	7292	38 (3)
C(7)	3795(4)	8287(3)	6065(2)	43 (3)
C(8)	2821	7732	6093	56(3)
C(9)	2699	7195	6616	56(3)
C(10)	3553	7213	7113	52 (3)
C(11)	4528	7768	7085	43 (3)
C(12)	4649	8305	6562	35 (2)
C(13)	7286(8)	8446(7)	6600(4)	82 (4)
C(14)	8028(11)	8440(9)	6115(5)	122 (6)
C(15)	9224 (6)	8013(5)	6041(3)	40 (3)
C(16)	9508(8)	8118(6)	5340(3)	60 (3)
C(17)	8851(6)	8891(5)	5144 (3)	42 (3)
0(1)	7857(4)	8979(3)	5593(2)	35 (2)

Röntgenstrukturanalyse von 4b^[20]: Einkristall aus CHCl₃/n-Hexan: $0.1 \times 0.3 \times 0.3$ mm; Siemens Vierkreisdiffraktometer P4, Mo- K_{α} (Graphit-Monochromator, $\lambda = 0.71073$ Å). $C_{34}H_{38}Br_4Fe_2O_2P_{23}$ Molmasse 972.0, Raumgruppe Pbca, Gitterkonstanten a =1099.7(2), b = 1605.7(3), c = 2078.4(4) pm, $d_{\text{ber}} = 1.759$ g/cm³, V = $3670.0(12) \cdot 10^6 \text{ pm}^3$, Z = 4, $\mu(\text{Mo-}K_{\alpha}) = 5.262 \text{ mm}^{-1}$, Meßbereich $2\Theta = 4 - 40^\circ$, Scan = ω ; Scangeschwindigkeit variabel $(10 - 30^\circ)$ min in ω); h, k, l: -11 \rightarrow 11, -11 \rightarrow 11, -20 \rightarrow 20, Gesamtzahl der Reflexe 11250, Zahl der symmetrieunabhängigen Reflexe mit $I \ge 2\sigma(I)$ 3875, verfeinerte Parameter 286, Absorptionskorrektur empirisch (Ψ -Scan), max./min. Transmission 1.00/0.256. Die Lösung der Struktur gelang mittels einer Patterson-Synthese^[21]. Alle Atome (außer H) wurden anisotrop verfeinert. Die H-Atome wurden geometrisch positioniert (Riding-model) und die Phenylringe als starre Gruppen behandelt. Max. und min. Restelektronendichte 0.42 bzw. $-0.53 \text{ e}^{\text{Å}-3}$. Der R-Wert ergab sich zu 0.036 (R_{w} = 0.044). S = 0.92. Die Lageparameter von **4b** sind in Tab. 2 zusammengestellt. Wegen Fehlordnung ist der Temperaturfaktor von Atom C14 erhöht.

- ^[1] A. Bader, E. Lindner, Coord. Chem. Rev. 1991, 108, 27-110.
- ^[2] E. Lindner, J. Dettinger, A. Möckel, Z. Naturforsch., Teil B, **1991**, 46, 1519-1524.
- ^[3] E. Lindner, A. Möckel, Z. Naturforsch., Teil B, 1992, 47, 693-696.
- ^[4] E. Lindner, B. Karle, Chem. Ber. 1990, 123, 1469-1473.
- ^[5] E. Lindner, A. Möckel, H. A. Mayer, R. Fawzi, Chem. Ber. 1992, 125, 1363-1367.
- ^[6] E. Lindner, B. Karle, H. A. Mayer, G. M. McCann, A. Carvill, J. Chem. Soc., Dalton Trans. **1990**, 3107-3115.
- ^[7] E. Lindner, B. Karle, Z. Naturforsch., Teil B, 1990, 45, 1108-1110.
- ^[8] E. Lindner, A. Möckel, H. A. Mayer, H. Kühbauch, R. Fawzi, M. Steimann, Inorg. Chem., im Druck.
- ^[9] E. Lindner, H. Rothfuß, R. Fawzi, W. Hiller, Chem. Ber. 1992, 125, 541-550.^[10] [^{10a]} G. Booth, J. Chatt, J. Chem. Soc. **1962**, 2099-2106. -
- ^[10b] W. Haberditzl, Magnetochemie, Akademie Verlag, Berlin, 1968, S. 150.
- ^[11] A. R. Jones, A. L. Stuart, J. L. Atwood, W. E. Hunter, R. D. Rogers, Organomet. 1982, 1, 1721-1723. ^[12] L. Sacconi, M. Di Vaira, Inorg. Chem. 1978, 17, 810-815.

- ^[13] E. Lindner, U. Schober, R. Fawzi, W. Hiller, U. Englert, P. Wegner, Chem. Ber. 1987, 120, 1621-1628.
- ^[14] P. E. Garrou, Chem. Rev. 1981, 81, 229-266.
- ¹⁴⁴ P. E. Garrou, Chem. Rev. 1981, 81, 229 266.
 ^[15] ^[15a] M. Poliakoff, E. Weitz, Acc. Chem. Res. 1987, 20, 408 414. ^[15b] T. Ziegler, V. Tschinke, L. Fan, A. D. Becke, J. Am. Chem. Soc. 1989, 111, 9177 9185.
 ^[16] ^[16a] L. Bellon, R. W. Taft, J. L. M. Abboud, J. Org. Chem. 1980, 45, 1166 1168. ^[16b] R. Mateva, F. Fratev, M. Pavlova, Ma-henrol. Chem. 1972, 247.
- kromol. Chem. 1973, 169, 235-247.
- ^[17] E. Lindner, U. Schober, E. Glaser, H. Norz, P. Wegner, Z. Naturforsch., Teil B, 1987, 42, 1527-1536.
 ^[18] J. F. Riehl, Y. Jean, O. Eisenstein, M. Pelissier, Organomet. 1992,
- 11, 729-737.
- ^[19] H. Rothfuß, Dissertation, Universität Tübingen, 1991.
- ^[20] Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Karlsruhe, Gesellschaft für wissenschaftlich-technische Information mbH, D-7514 Eggenstein-Leopoldshafen 2, unter Angabe der Hinterlegungsnummer CSD-56675, der Autorennamen und des Zeitschriftenzitats angefordert werden.
- ^[21] G. M. Sheldrick, Universität Göttingen, SHELXTL-PC.

[377/92]